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Quantum dynamics under the influence of external magnetic fields
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In this paper, we describe a very versatile numerical model, which can be applied to study the quantum
dynamics of an electron wave packet in the presence of external electric and magnetic fields. Detailed numeri-
cal analysis is carried out in the paper on the validity of such a model, including~1! comparison with analytical
solution in the case of uniform magnetic field, and~2! stringent numerical tests in the case of both electric and
magnetic fields. The algorithm presented here is found to be highly accurate, computationally efficient, and
numerically stable. It also has the advantage of being able to accommodate arbitrarily complex magnetic field
profiles as well as time-varying external fields.
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I. INTRODUCTION

The transport of two-dimensional~2D! electrons under
the influence of an external magnetic field has attracted c
siderable interest recently, showing a range of interes
phenomenon with promising novel applications. For e
ample, it has been used to probe nanostructured device
impurities @1#, to study quantum ratchets@2# and quantum
chaos @3#, and to understand the interference of differe
electronic paths@4#. While many experiments have been pe
formed, a fully quantum mechanical model to describe
various systems involving external magnetic fields has
been available, especially for nonuniform and time-vary
fields. Many classical and semiclassical models have b
developed~for example, see Refs.@1–5#!, but these fail to
capture the full quantum nature of the physical systems at
nanometer scale. As an example, Koonenet al. @1# used a
rather crude model in the analysis of their experimental d
which artificially cuts off parts of a wave function blocke
by an electric potential. In their paper, they called for a m
sophisticated model to help building a detailed picture of
shape and size of the density fluctuation in a 2D electron

A full quantum mechanical treatment requires an accu
solution of the corresponding time-dependent Schro¨dinger
equation, which reads

i
]c~r ,t !

]t
5Hc~r ,t !, ~1!

where the system Hamiltonian is

H52
1

2m
~2 i“2eA!21eV, ~2!

V is the electric potential,A is the magnetic vector potentia
defined by

B5¹3A, ~3!
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andB is the magnetic field strength.
With the main device structure being formed by the ele

tric potentialV, more subtle quantum effects can be prob
by applying an external magnetic fieldB. The application of
weak magnetic field allows the phase of the wave function
be altered without effecting the overall electron density d
tribution. For example, by applying a magnetic field to t
Aharonov-Bohm Ring, the transmission through the ring ca
be made to undergo oscillations as the electron wave fu
tion constructively and destructively interferes in the outp
lead @4#.

This paper presents a fast, accurate, and numeric
stable method to solve the above time-dependent Sc¨-
dinger equation. The solution contains complete spatial
phase information of the system under study at all times,
the method can be readily applied to many theoretical stu
on nanoelectronic devices operated by external electric
magnetic fields. The numerical results are compared dire
to an exact analytic solution for the case ofV50 and B
5(0,0,b) to ensure correct propagation. Stringent numeri
tests in the case of both electric and magnetic fields have
been carried out.

II. COMPUTATIONAL MODEL

As described earlier, the magnetic field enters the Ham
tonian via the vector potentialA, i.e.,

H52
1

2m
~2 i¹2eA!21eV, ~4!

whereA is defined by

B5¹3A. ~5!

For a given magnetic fieldB, there are an infinite numbe
of magnetic vector potentialsA ~namely, the different
gauges!, all of which provide the same results for physical
measurable quantities. However, different gauges have
ferent properties in their numerical implementation. For e
ample, three solutions for the magnetic vector potentiaA
corresponding to a constant magnetic fieldB5(0,0,b) are

A5b~2y,0,0!, ~6!
©2003 The American Physical Society02-1
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A5
b

2
~2y,x,0!, ~7!

A5
b

2
~x2y,x2y,0!. ~8!

A closer examination shows that Eq.~7! requires the mos
amount of memory and computation because it has two n
zero and nonsymmetricx andy components, while Eq.~6! is
not as numerically stable as Eqs.~7! and ~8!. The increased
multiplication factor in Eq. 6, beingb rather thanb/2 for the
other two gauges, doubles the size of the minute numer
error emerged from the boundaries each time the Ha
tonian is applied to the wave function. Consequently, Eq.~8!
is computationally more favorable than the other two.

Once we have the magnetic vector potentialA, the system
HamiltonianH is set up. The Chebyshev-Fourier scheme
detailed in Ref.@6# can then be used to solve the correspo
ing time-dependent Schro¨dinger equation. Briefly, this
method approximates the exponential time propagator b
Chebyshev polynomial expansion@7#

c~x,y,t !5exp@2 i ~Emax1Emin!t# (
n50

N
an~a!

3fn~2H̃!c~x,y,0!, ~9!

whereEmin andEmax are the upper and lower bounds on t
energies sampled by the wave packet,an(a)52Jn(a) ex-
cept fora0(a)5J0(a), Jn(a) are the Bessel functions of th
first kind, andfn are the Chebyshev polynomials. To ensu
convergence, the Hamiltonian needs to be normalized a

H̃5
1

Emax2Emin
@2H2Emax2Emin#. ~10!

The action of the Laplacian operator¹ on the wave func-
tions is carried out using a Fourier transformation techniq
@6#.

There is a further requirement on the magnetic vector
tential A due to the way that we evaluate the action of t
Laplacian operator on the wave functions. That is, the po
tial should be continuous across the boundaries and pre
ably zero along the boundaries. This is because the Fou
transformation method, used in this work to compute deri
tives, implies periodic boundary conditions@6#. As a result,
any nonzero component of the wave packet crossing
boundary would reemerge on the opposite side, giving ris
unwanted artifact.

To satisfy this requirement, we define

A5H „Ax~x,y!,Ay~x,y!,0…, x or y not near a boundary

0, x or y near a boundary,
~11!

which is then smoothed by convoluting with a Gauss
function or via a local averaging process. This magnetic v
tor potentialA produces a constant magnetic field across
04670
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nanostructure under study but deviates from constant n
the boundaries. In general, the smoothed vector potential
be expressed as

A5„f ~x,y!,g~x,y!,0…. ~12!

Expanding Eq.~4! as

H52
1

2m
~2¹21 ie¹A1 ieA“1e2A2!1eV, ~13!

leads to

H52
1

2m S 2¹212i\eS g~x,y!
]

]y
1 f ~x,y!

]

]xD
1 i\eS ] f ~x,y!

]x
1

]g~x,y!

]y D1e2@ f ~x,y!21g~x,y!2# D
1eV, ~14!

where f (x,y) and g(x,y) are smoothed functions, approx
mating the vector operatorA in the region where propagatio
occurs, while being zero at the boundaries.

For speed of computation the components independen
c, that is,

i\eS ] f ~x,y!

]x
1

]g~x,y!

]y D1e2~ f ~x,y!21g~x,y!2!,

~15!

can be computed once and stored. While the compon
dependent onc, that is,

2i\eS g~x,y!
]

]y
1 f ~x,y!

]

]xD , ~16!

must be computed each time the Hamiltonian is compute
Evaluation of the dependent components requires six

rays to be stored„f (x,y), g(x,y), ]/]y, ]/]x and the appli-
cation of each partial derivative on the wave function… and
two reverse Fourier transforms to be applied to the wa
function. The net result is an increase in memory space
quired by seven arrays~one independent and six depende
components! and two extra reverse Fourier transforms~and
the associated increase in multiplications!, doubling the
number of Fourier transforms computed.

The smoothing operation gives rise to moderately la
spatial derivatives of the wave packet near the boundar
which can introduce considerable numerical error if the wa
packet approaches the boundary. In all calculations p
sented, the spatial domain is set to be sufficiently large
that the wave packet does not encounter the boundary reg

III. ANALYTIC SOLUTION

In order to verify the algorithm described above, we co
pare our results with the exact solution for the time evolut
of an electron wave packet under the influence of a cons
magnetic field with zero electric potential, i.e.,B5(0,0,b)
andV50. The derivation of an exact solution for the motio
2-2
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of a Gaussian electron wave packet follows the work by
Haar @8# as described below.

The Scro¨dinger equation for a charged particle moving
a constant uniform magnetic field is given by

i\
]C

]t
52

\2

2m
¹2C1

\

i
vLS x

]C

]y
2y

]C

]x D
1

1

2
mvL

2~x21y2!C, ~17!

where the magnetic vector potential used isA5(b/2)
(2y,x,0) andvL5eb/2m is the Larmor frequency. To find
a solution a rotating frame of reference is chosen

x5x8cos~vLt !1y8sin~vLt !, ~18!

y52x8sin~vLt !1y8cos~vLt !, ~19!

t5t8, ~20!

C5C8. ~21!

In this rotating frame of reference, the operators become

]

]t8
5

]

]t
1vLS x

]

]y
2y

]

]xD , ~22!

¹825¹2. ~23!

With these substitutions, the Schro¨dinger equation is
transformed to a simple harmonic oscillator

i\
]C8

]t8
52

\2

2m
¹82C81

mvL
2

2
~x821y82!C8, ~24!

with a well known solution. In two dimensions,

C8[c~x8,y8,t !

5C(
n,l

An,lxn~ax8!x l~ay8!exp@2 ivLt~n1 l 11!#,

~25!

where xn(ax)5cnexp(2a2x2/2)Hn(ax) are the eigenfunc-
tions of the simple harmonic oscillator,An,l5An

xAl
y are cho-

sen to satisfy the initial conditions withAn
x andAl

y referring
to thex andy component ofAn,l , respectively,Hn(ax) are
the Hermite polynomials, a5AmvL /\ and cn

2

5a/(2nn!Ap).
Using the generating function for the Hermite polynom

als

exp~2l212lh!5(
n

ln

n!
Hn~h!, ~26!

we have
04670
r c~x8,y8,0!5Cexp@2~An
xcnn! !2/n12~An

xcnn! !1/nax8#

3expF2
a2x82

2 Gexp@2~Al
ycl l ! !2/l

12~Al
ycl l ! !1/lay8#expF2

a2y82

2 G . ~27!

If the initial wave packet is given by a Gaussian

c~x8,y8,0!5
1

Awxwyp

3expS 2
x82

2wx
2

2
y82

2wy
2

1
ipxx8

\
1

ipyy8

\ D ,

~28!

then equating the coefficients in Eqs.~27! and ~28! gives

1

Awxwyp
5Cexp@2~An

xcnn! !2/n2~Al
ycl l ! !2/l #, ~29!

2
1

2wx
2

52
a2

2
, ~30!

2
1

2wy
2

52
a2

2
, ~31!

ipx

\
52~An

xcnn! !1/na, ~32!

ipy

\
52~Al

ycl l ! !1/la. ~33!

From these, we obtain the following relations:

wx5wy5
1

a
, ~34!

An
xcn5

1

n! S ipx

2\a D n

, ~35!

Al
ycl5

1

l ! S ipy

2\a D l

, ~36!

C5
a

Ap
expF2S px

2\a D 2

2S py

2\a D 2G . ~37!

The evolution of the wave packet is, therefore,
2-3
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c~x8,y8,t !5C(
n,l

1

n! S ipx

2\a D n 1

l ! S ipy

2\a D l

3expS 2
a2x82

2 D
3expS 2

a2y82

2 DHn~ax8!Hl~ay8!

3exp@2 ivLt~n1 l 11!#. ~38!

By using again the generating function for the Hermite po
nomials, the above expression can be further simplified

c~x8,y8,t !5CexpF2lx
212alxx82

a2x82

2
2ly

212alyy8

2
a2y82

2
2 ivLt G , ~39!

where

lx5
ipx

2\a
exp~2 ivLt !, ~40!

ly5
ipy

2\a
exp~2 ivLt !. ~41!

IV. NUMERICAL RESULTS

As outlined above, there are many different poten
gauge transformations that can be used. In the case o
uniform external magnetic field, we have Eqs.~6!, ~7!, and
~8!. We found that all three gauges provide essentially
same time propagation of the electron wave packet. Thi
particularly true when a weak external magnetic field is
plied to control the phase of the electron wave packet ra
than greatly altering its propagation trajectory. For a la
magnetic field, the selection of the gauge makes a sl
difference to the propagation error. It is found that calcu
tions using Eqs.~7! and~8! are more accurate than using E
~6!. This is due to, as discussed above, the half ofb in these
equations, which reduces errors emerged from the bou
aries each time the Hamiltonian is applied. Due to the line
ity of the Chebyshev propagation scheme, applying
HamiltonianN times with errord results in a total error for
the summation ofO(Nd). Consequently, for a typical run
with 1000 terms in the summation, Eq. 6 can have an e
1000 times greater than the other two gauges. Howeve
was still found to be typically below 1026. In terms of effi-
ciency, the symmetric gauge@i.e., Eq. ~8!# is simpler to
implement and produces faster and more economical co
than Eq.~7!. This gauge is therefore used for the calculatio
reported below.

A second consideration is the requirement that the ve
potentialA be continuous across the boundaries and pre
ably zero along the boundaries, since the Fourier transfor
tion method is used to compute the derivatives@1#. Also, to
reduce high frequency noise, the vector potential should
04670
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smooth, without sharp spikes especially near the bounda
This has been achieved by imposing the condition that
vector potential smoothly drops to zero at the boundar
Thex andy component ofA used in this work are plotted in
Figs. 1~a! and 1~b!, respectively. As shown the vector pote
tial is symmetric in thex andy directions. It is also continu-
ous, smooth, and zero across the boundaries.

From the magnetic vector potentialA, the effective mag-
netic field can be calculated by Eq.~5!. Although the
smoothing operation on the vector potentialA alters its func-
tion form as given in Eq.~11!, Fig. 1~c! demonstrates that in
the region where the wave packet is propagating, the cor
uniform magnetic fieldB5(0,0,0.1 T) is experienced. It is
only when the wave packet approaches the boundaries th
would experience a nonuniform magnetic field. This is e
sured not to happen by setting up a sufficiently large num
cal grid, so that the wave packet is sufficiently away from t
boundaries throughout the entire propagation.

Great care must be taken when including the magn

FIG. 1. ~a! and~b! Thex andy components of the vector poten
tial A used in this work;~c! the magnetic field produced from thi
vector potential using Eq.~5!. The spatial size of the simulation i
8 mm in each dimension.
2-4
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fields in the Hamiltonian, as the momentum of the wa
packet can be transformed from thex direction into they
direction. If the numerical grid is not set up correctly, f
example, if each dimension supports a different maxim
momentum, high frequency noise can be effected leadin
numerical instability. Also, the change in momentum fro
the x to y dimension results in a high maximum momentu
being required to track. This can be taken care of by adj
ing the scaling of the Hamiltonian in the Chebyshev pro
gation scheme such as increasingEmax, the upper bound on
the energies sampled by the wave packet.

Figure 2~a! shows that the electron wave packet follow
the same trajectory as a classical electron in the same m
netic field. The wave packet initially has energy 0.082 eV
the x direction and momentum spread 2.3%. The propa
tion is under the influence of an applied magnetic field of
T. The time step is chosen to be 0.023 ps, so a full cir
takes 0.23 ps. The absolute error between our numerica
lution obtained using the Chebychev-Fourier scheme and
analytic solution given by Eq.~39! is shown in Fig. 2~b!. The
maximum error is about one part in a billion, which is clo
to machine accuracy.

Since the Schro¨dinger equation is symmetric with respe
to time reversal, a stringent test of reliability of the soluti
is to reverse the evolution with time and the wave funct
should return to its initial state. If errors were accumula
along the way, a reverse propagation would lead to so
thing quite different from the starting wave function. Th
test was performed by propagating the initial wave funct
forward and then backward in time as shown in Fig. 3.
this case, apart from the constant magnetic field of 0.1 T

FIG. 2. ~a! Propagation of an electron wave packet under
influence of the magnetic field shown in Fig. 1~c!. The circles above
the wave packet indicate the classical particle trajectory.~b! Abso-
lute errors between our numerical results and the analytic solu
04670
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FIG. 3. ~a!–~c! The forward-time propagation of the wav
packet through a double electric potential barrier under a cons
magnetic field. Parts~d! and ~e! show the backward-time propaga
tion of the wave packet to reform the initial wave packet.
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double electric potential barrier as shown in Fig. 4 is a
applied so that the electron wave packet propagates unde
influence of both electric and magnetic field. The initial wa
packet has energy of 0.082 eV and 10% momentum spr
The time step between each snap shot is 0.4 ps. The
between the initial wave packet and the forward-the
backward propagated wave packet is shown in Fig. 5.
maximum error is again extremely small, in the order
1028.

In addition, we found that both the energy and the no
were conserved to the order of 1028 through all the calcula-
tions. These tests provide strong evidence that our comp
tional model is highly accurate, while maintaining the fu
quantum information.

The method described above is applicable to more t
just uniform constant magnetic fields. As long as an app
priate vector potential can be constructed, arbitrary magn
fields can be studied. By smoothing the vector potential
the boundary, the computation should proceed with little
ror, as with the results shown in this paper. While the Che
shev propagation scheme is only valid for time-independ
potentials, time-dependent magnetic fields may be studie
using many small time steps, considerably smaller than
oscillation of the magnetic field. In this fashion, the meth
demonstrated is extensible to arbitrarily shaped and t
varying magnetic fields.

The above calculations were performed on a single 1 G
alpha processor with 1 GB of memory. The results for Fi

FIG. 4. The double electric potential barrier with height
0.082 eV.
ev

s
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2 and 3 consumed about 18 and 21 h of CPU time, resp
tively. The memory requirement is about 500 MB. The
calculations are considerably longer than normally requi
in order to demonstrate its numerical stability and accura
We have also performed detailed calculations for the exp
mental set up of Koonanet al. @1#, which took about 4 h of
CPU time on the same computer. This will be reported in
separate publication.

V. CONCLUSION

Presented in this paper is a fast, accurate, and numeric
stable computational scheme for the time-dependent pro
gation of an electron wave packet under the influence of b
electric and magnetic fields. The algorithm is based on dir
numerical integration of the time-dependent Schro¨dinger
equation. This is an extension of our earlier work on elect
transport governed by electric potentials@1#. Stringent tests
on the accuracy of our solutions were carried out, includ
conservation of norm and energy, time reversal propagat
and comparison with exact solutions in the case of cons
uniform magnetic field with zero electric potential. Th
model can be readily applied to arbitrarily complex magne
field profiles as well as time-varying external fields. It
anticipated that such a scheme will prove useful for study
systems such as quantum ratchets, Aharonov-Bohm r
magnetic and electric impurities, quantum chaos, as wel
various quantum interference phenomena.

FIG. 5. Error between the initial wave packet and the fowa
backward time propagated wave packet. This error is 7 to 8 ord
of magnitude smaller than the wave packet, indicating that
propagation method introduces little error.
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