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Quantum dynamics under the influence of external magnetic fields
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In this paper, we describe a very versatile numerical model, which can be applied to study the quantum
dynamics of an electron wave packet in the presence of external electric and magnetic fields. Detailed numeri-
cal analysis is carried out in the paper on the validity of such a model, inclu@ijrcpmparison with analytical
solution in the case of uniform magnetic field, @) stringent numerical tests in the case of both electric and
magnetic fields. The algorithm presented here is found to be highly accurate, computationally efficient, and
numerically stable. It also has the advantage of being able to accommodate arbitrarily complex magnetic field
profiles as well as time-varying external fields.

DOI: 10.1103/PhysRevE.67.046702 PACS nunier02.70~c, 31.15-p, 73.23.Ad, 73.23:b

[. INTRODUCTION andB is the magnetic field strength.
With the main device structure being formed by the elec-

The transport of two-dimensiondRD) electrons under tric potentialV, more subtle quantum effects can be probed
the influence of an external magnetic field has attracted corby applying an external magnetic fielRl The application of
siderable interest recently, showing a range of interestingveak magnetic field allows the phase of the wave function to
phenomenon with promising novel applications. For ex-be altered without effecting the overall electron density dis-
ample, it has been used to probe nanostructured devices faibution. For example, by applying a magnetic field to the
impurities [1], to study quantum ratchef®] and quantum Aharonov-Bohm Ringhe transmission through the ring can
chaos[3], and to understand the interference of differentbe made to undergo oscillations as the electron wave func-
electronic path§4]. While many experiments have been per-tion constructively and destructively interferes in the output
formed, a fully quantum mechanical model to describe thdead[4].
various systems involving external magnetic fields has not This paper presents a fast, accurate, and numerically
been available, especially for nonuniform and time-varyingstable method to solve the above time-dependent ‘Schro
fields. Many classical and semiclassical models have beedinger equation. The solution contains complete spatial and
developed(for example, see Ref$l-5]|), but these fail to phase information of the system under study at all times, and
capture the full quantum nature of the physical systems at thihe method can be readily applied to many theoretical studies
nanometer scale. As an example, Kooregral. [1] used a on nanoelectronic devices operated by external electric and
rather crude model in the analysis of their experimental datanagnetic fields. The numerical results are compared directly
which artificially cuts off parts of a wave function blocked to an exact analytic solution for the case W0 and B
by an electric potential. In their paper, they called for a more=(0,0b) to ensure correct propagation. Stringent numerical
sophisticated model to help building a detailed picture of theests in the case of both electric and magnetic fields have also
shape and size of the density fluctuation in a 2D electron gakeen carried out.

A full quantum mechanical treatment requires an accurate
solution of the corresponding time-dependent Sdimger Il. COMPUTATIONAL MODEL

equation, which reads . ) o .
As described earlier, the magnetic field enters the Hamil-

9(r,t) tonian via the vector potenti#, i.e.,
I—— =Hy(r.Y), () 1
- (_ivU_—_ 2
H >m iV—eA)-+eV, (4

where the system Hamiltonian is
whereA is defined by

1
H=—5—(~iV-eA)?teV, ) B=VXA. ®)

For a given magnetic fiel®, there are an infinite number
of magnetic vector potentialA (namely, the different
gauge} all of which provide the same results for physically
measurable quantities. However, different gauges have dif-
B=VXA, (3 ferent properties in their numerical implementation. For ex-
ample, three solutions for the magnetic vector poterhial
corresponding to a constant magnetic fiBlet (0,0b) are

V is the electric potentialp is the magnetic vector potential
defined by
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b nanostructure under study but deviates from constant near
A=5(=y.x0), (7)  the boundaries. In general, the smoothed vector potential can
be expressed as
b =
AZE(X_yyX_y,O)- (8) A (f(X,y),g(XyY)aO)- (12)

Expanding Eq(4) as
A closer examination shows that E(f) requires the most
amount of memory and computation because it has two non- H= 1 (—V2+ieVA+ieAV+e?A?)+eV, (13

zero and nonsymmetricandy components, while Eq6) is 2m

not as numerically stable as Ed3) and(8). The increased

multiplication factor in Eq. 6, being rather tharb/2 for the ~ leads to

other two gauges, doubles the size of the minute numerical 3 9
error emerged from the boundaries each time the Ham”-Hz__<_V2+2iﬁe(g(xyy)_+f(x,y)_
tonian is applied to the wave function. Consequently, [Bj. 2m J IX
is computationally more favorable than the other two.

Once we have the magnetic vector potenfiathe system +ihe Irx.y) + &g(x,y)) +e[f(x,y)%+ g(x,y)z])
Hamiltonian7{ is set up. The Chebyshev-Fourier scheme as X Iy
detailed in Ref[6] can then be used to solve the correspond- +ey (14)

ing time-dependent Schidmger equation. Briefly, this

method approximates the exponential time propagator by @heref(x,y) andg(x,y) are smoothed functions, approxi-
Chebyshev polynomial expansifr] mating the vector operatdk in the region where propagation
occurs, while being zero at the boundaries.

N
. For speed of computation the components independent of
‘//(X1yvt):exq:_|(5max+ gmin)t]E an(a') W that iz P P P
n=0 ’ 3
X (= F)(x,y,0), 9 o [ITxY) dgxy)) o 2 2
n ine| ——+ 3y +e(f(x,y)°+a(x,y)%),

where&,i, and&ax are the upper and lower bounds on the (15
energies sampled by the wave paclkai{a)=2J,(a) ex- )

cept forag(a)=Jo(a), J,(«) are the Bessel functions of the €&n be computed once and stored. While the components
first kind, andd, are the Chebyshev polynomials. To ensuredependent o, that is,

convergence, the Hamiltonian needs to be normalized as

2ihe

J J
g(X,y)W"'f(X,y)&), (16)

~ 1

H= ﬁ[ZH_gmax_ Eminl- (10 ) ) ) )
max_ “min must be computed each time the Hamiltonian is computed.

Evaluation of the dependent components requires six ar-

The action of the Laplacian operat®r on the wave func- rays to be storedf(x,y), g(x,y), d/dy, d/ax and the appli-

tions is carried out using a Fourier transformation teCh”iqu%ation of each partial derivative on the wave funcliamd

[6]. . . , two reverse Fourier transforms to be applied to the wave
There is a further requirement on the magnetic vector pOgnction. The net result is an increase in memory space re-

tential A due to the way that we evalluate the aption of thequired by seven array@ne independent and six dependent
Laplacian operator on the wave functions. That is, the potensgynanentsand two extra reverse Fourier transforfasd
tial should be continuous across the boundaries and prefe{he associated increase in multiplicatipnsioubling the

ably zero along the boundaries. This is because the Fourie}, her of Fourier transforms computed.
transformation method, used in this work to compute deriva- 11,4 smoothing operation gives rise to moderately large

tives, implies periodic boundary conditiof8]. As a result, g avial derivatives of the wave packet near the boundaries,

any nonzero component of the wave packet crossing onGhich can introduce considerable numerical error if the wave
boundary would reemerge on the opposite side, giving rise 19, et approaches the boundary. In all calculations pre-

unwanteq artlfr]a}ct. ) . sented, the spatial domain is set to be sufficiently large so
To satisfy this requirement, we define that the wave packet does not encounter the boundary region.

A.(X,¥),A,(X,y),0), X or y notnearaboundar
A= (Adxy),Ay(x,y),0) y y l1l. ANALYTIC SOLUTION
0, X or y near a boundary,

(11 In order to verify the algorithm described above, we com-
pare our results with the exact solution for the time evolution
which is then smoothed by convoluting with a Gaussianof an electron wave packet under the influence of a constant
function or via a local averaging process. This magnetic vecmagnetic field with zero electric potential, i.8=(0,0b)
tor potentialA produces a constant magnetic field across theand)=0. The derivation of an exact solution for the motion
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of a Gaussian electron wave packet follows the work by ter P(x',y’,0)=Cexf — (Ac,n!)?M+2(Akc,n!)Max']

Haar[8] as described below.
The Scralinger equation for a charged particle moving in
a constant uniform magnetic field is given by

A hZVqu % A L)
T T om Y TNy Y
1 2/,2 2
5 Mo (C+y?) W, (17)

where the magnetic vector potential used As=(b/2)
(—VY,x,0) andw, =eb/2m is the Larmor frequency. To find
a solution a rotating frame of reference is chosen

x=x'cog w t)+y'sin(wt), (18
y=—x'sin(w t)+y’cog w,t), (19)
t=t’, (20)

v=", (21

In this rotating frame of reference, the operators become

J J N J J 29
o m el Xy Y/ (22)
V'2=v?, (23

With these substitutions, the Schinger equation is
transformed to a simple harmonic oscillator

2

2 M
(XYW, (24

f V20 +
- 2m

v’

at’

with a well known solution. In two dimensions,
'=y((x',y' 1)

=CZI Anixn(ax)xi(ayexd —io t(n+1+1)],
(25)

where yn(ax)=c,exp— a®?2)H,(ax) are the eigenfunc-
tions of the simple harmonic oscillatok,, | =A}A{ are cho-
sen to satisfy the initial conditions with} and A referring

to thex andy component ofA, |, respectivelyH,(ax) are
2

the Hermite polynomials, a=ymw /A and c;
=al(2"n! ).
Using the generating function for the Hermite polynomi-
als
)\ﬂ
exp(— A+ 20 )= 2 Ho(7), (26)
we have

2X/2
Xex;{— ¢ 3 exd — (AVc1)?
2,12
+2(A,3’c|l!)1/'ay’]exr{— ¢ ; } (27)

If the initial wave packet is given by a Gaussian

P(x'y' 0=
Wi Wy 77

conf -

then equating the coefficients in Eq27) and (28) gives

12 12

X ipyXx’

h

Xy
2w; 2w

ipyy’
R

|

(28)

1
————=Cexqd — (A%c,n)Z"—(A¥cIH?], (29
\/W F[ ( n¥n ) ( (| ]
1 _ o? (30
2w? 2
1 _ o? 31
2w ’
ip_x_ X 1in
z =2(A¥c,n") e, (32
iIO—y—z(Ayc [ (33
fL = Gl .
From these, we obtain the following relations:
1
WX=Wy=Z, (34
1/ ip,\"
X e p—
AnCn =] (Zha) ! (39
1/ipy
Yo = | Y
Are |!(2 a)' (36
2 2
SO O 0 I O
€= \/;ex% (Zha) (Zﬁa) ' 37

The evolution of the wave packet is, therefore,
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o 1/ ip,\"1(ipy )
X'y H=C2 m<2ha) r(ﬁ)

a2x/2
conf -2

a2y12
xexr{ — )Hn(ax’)H|(ay’)

Xex —i o t(n+1+1)]. @8 @ ’
By using again the generating function for the Hermite poly-
nomials, the above expression can be further simplified as
Ay (T m) -
2X72
w(x’,y’,t)=Cexp[—>\§+ 20X —— —Ni+2aNyy’
a2y12 .
- 2 —1 (,()Lt y (39)
where
iPx .
)\X—%exq—let), (40
_ipy iy
)\y——zﬁaexp( iwt). (41

IV. NUMERICAL RESULTS

As outlined above, there are many different potential
gauge transformations that can be used. In the case of an
uniform external magnetic field, we have Eg8), (7), and
(8). We found that all three gauges provide essentially the o)
same time propagation of the electron wave packet. This is
particularly true when a weak external magnetic field is ap- FIG. 1. (a) and(b) Thex andy components of the vector poten-
plied to control the phase of the electron wave packet ratheial A used in this workyc) the magnetic field produced from this
than greatly altering its propagation trajectory. For a largevector potential using Eq5). The spatial size of the simulation is
magnetic field, the selection of the gauge makes a slight um in each dimension.
difference to the propagation error. It is found that calcula-
tions using Eqs(7) and(8) are more accurate than using Eqg. smooth, without sharp spikes especially near the boundaries.
(6). This is due to, as discussed above, the half of these  This has been achieved by imposing the condition that the
equations, which reduces errors emerged from the boundrector potential smoothly drops to zero at the boundaries.
aries each time the Hamiltonian is applied. Due to the linearThe x andy component ofA used in this work are plotted in
ity of the Chebyshev propagation scheme, applying thd~igs. Ia) and 1b), respectively. As shown the vector poten-
HamiltonianN times with error§ results in a total error for tial is symmetric in thex andy directions. It is also continu-
the summation ofO(N&S). Consequently, for a typical run ous, smooth, and zero across the boundaries.
with 1000 terms in the summation, Eg. 6 can have an error From the magnetic vector potential the effective mag-
1000 times greater than the other two gauges. However, itetic field can be calculated by E@5). Although the
was still found to be typically below IC. In terms of effi-  smoothing operation on the vector potenfiahlters its func-
ciency, the symmetric gaugg.e., Eq. (8)] is simpler to tion form as given in Eq(11), Fig. 1(c) demonstrates that in
implement and produces faster and more economical codeke region where the wave packet is propagating, the correct
than Eq.(7). This gauge is therefore used for the calculationsuniform magnetic fieldB=(0,0,0.1 T) is experienced. It is
reported below. only when the wave packet approaches the boundaries that it

A second consideration is the requirement that the vectowould experience a nonuniform magnetic field. This is en-
potential A be continuous across the boundaries and prefersured not to happen by setting up a sufficiently large numeri-
ably zero along the boundaries, since the Fourier transformacal grid, so that the wave packet is sufficiently away from the
tion method is used to compute the derivatiy&k Also, to  boundaries throughout the entire propagation.
reduce high frequency noise, the vector potential should be Great care must be taken when including the magnetic
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(b) o)

FIG. 2. (a) Propagation of an electron wave packet under the
influence of the magnetic field shown in FigclL The circles above
the wave packet indicate the classical particle trajecidyAbso-
lute errors between our numerical results and the analytic solution.

fields in the Hamiltonian, as the momentum of the wave
packet can be transformed from thedirection into they
direction. If the numerical grid is not set up correctly, for
example, if each dimension supports a different maximum
momentum, high frequency noise can be effected leading to
numerical instability. Also, the change in momentum from
the x to y dimension results in a high maximum momentum
being required to track. This can be taken care of by adjust-
ing the scaling of the Hamiltonian in the Chebyshev propa-
gation scheme such as increasig,,, the upper bound on
the energies sampled by the wave packet.

Figure Za) shows that the electron wave packet follows
the same trajectory as a classical electron in the same mag-
netic field. The wave packet initially has energy 0.082 eV in
the x direction and momentum spread 2.3%. The propaga-
tion is under the influence of an applied magnetic field of 0.1
T. The time step is chosen to be 0.023 ps, so a full circle
takes 0.23 ps. The absolute error between our numerical so-
lution obtained using the Chebychev-Fourier scheme and the
analytic solution given by Eq39) is shown in Fig. 2b). The
maximum error is about one part in a billion, which is close
to machine accuracy.

Since the Schidinger equation is symmetric with respect
to time reversal, a stringent test of reliability of the solution
is to reverse the evolution with time and the wave function
should return to its initial state. If errors were accumulated
along the way, a reverse propagation would lead to some-
thing quite different from the starting wave function. This

PHYSICAL REVIEW E 67, 046702 (2003

3x10%

Amplitude l

e

FIG. 3. (a—(c) The forward-time propagation of the wave

test was performed by propagating the initial wave functionpacket through a double electric potential barrier under a constant
forward and then backward in time as shown in Fig. 3. Inmagnetic field. Partéd) and(e) show the backward-time propaga-
this case, apart from the constant magnetic field of 0.1 T, @on of the wave packet to reform the initial wave packet.
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E (ev) <

0.082
0.041

i . ' y (um) x (um)

X (um) 11 FIG. 5. Error between the initial wave packet and the foward-
. . ) ) ) backward time propagated wave packet. This error is 7 to 8 orders
FIG. 4. The double electric potential barrier with height of ot magnitude smaller than the wave packet, indicating that the
0.082 eV. propagation method introduces little error.

double electric potential barrier as shown in Fig. 4 is alsop and 3 consumed about 18 and 21 h of CPU time, respec-
applied so that the electron wave packet propagates under thgely. The memory requirement is about 500 MB. These
influence of both electric and magnetic field. The initial waveca|culations are considerably longer than normally required
packet has energy of 0.082 eV and 10% momentum spreagh order to demonstrate its numerical stability and accuracy.
The time step between each snap shot is 0.4 ps. The errqye have also performed detailed calculations for the experi-
between the initial wave packet and the forward-thenmental set up of Koonaat al.[1], which took aboti4 h of
backward propagated wave packet is shown in Fig. 5. Thegpy time on the same computer. This will be reported in a
ma>;imum error is again extremely small, in the order ofseparate publication.
10°°.

In addition, we found that both the energy and the norm V. CONCLUSION
were conserved to the order of 1through all the calcula-
tions. These tests provide strong evidence that our computa- Presented in this paper is a fast, accurate, and numerically
tional model is highly accurate, while maintaining the full stable computational scheme for the time-dependent propa-
guantum information. gation of an electron wave packet under the influence of both

The method described above is applicable to more tharlectric and magnetic fields. The algorithm is based on direct
just uniform constant magnetic fields. As long as an appronumerical integration of the time-dependent Sclimger
priate vector potential can be constructed, arbitrary magnetiequation. This is an extension of our earlier work on electron
fields can be studied. By smoothing the vector potentials atransport governed by electric potentifld. Stringent tests
the boundary, the computation should proceed with little eron the accuracy of our solutions were carried out, including
ror, as with the results shown in this paper. While the Chebye€onservation of norm and energy, time reversal propagation,
shev propagation scheme is only valid for time-independenand comparison with exact solutions in the case of constant
potentials, time-dependent magnetic fields may be studied byniform magnetic field with zero electric potential. This
using many small time steps, considerably smaller than thenodel can be readily applied to arbitrarily complex magnetic
oscillation of the magnetic field. In this fashion, the methodfield profiles as well as time-varying external fields. It is
demonstrated is extensible to arbitrarily shaped and timanticipated that such a scheme will prove useful for studying
varying magnetic fields. systems such as quantum ratchets, Aharonov-Bohm ring,

The above calculations were performed on a single 1 GHmagnetic and electric impurities, quantum chaos, as well as
alpha processor with 1 GB of memory. The results for Figsvarious quantum interference phenomena.
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